Figure 10#
Imports#
import dolfin
import matplotlib.pyplot as plt
import numpy
import sympy
import dolfin_mech as dmech
import micro_poro_structure_generator as gen
Parameters#
Geometry#
seeds_filename = "Fig10-seeds.dat"
mesh_filebasename = "Fig10-mesh"
domain_y = 1.
domain_x = domain_y * numpy.sqrt(3)/1.5/2
thickness = 0.092
gen.generate_seeds_semi_regular(
DoI=0.,
row=1,
domain_y=domain_y,
seeds_filename=seeds_filename)
gen.generate_mesh_2D_rectangle_w_voronoi_inclusions(
mesh_filename=mesh_filebasename,
seeds_filename=seeds_filename,
h=thickness,
lcar=thickness/5,
domain_x=domain_x,
domain_y=domain_y,
shift_y=0.,
remove_seeds=True)
mesh = dolfin.Mesh()
dolfin.XDMFFile(mesh_filebasename+".xdmf").read(mesh)
mesh_coord = mesh.coordinates()
mesh_xmax = max(mesh_coord[:,0]); mesh_xmin = min(mesh_coord[:,0])
mesh_ymax = max(mesh_coord[:,1]); mesh_ymin = min(mesh_coord[:,1])
mesh_bbox = [mesh_xmin, mesh_xmax, mesh_ymin, mesh_ymax]
mesh_bbox_V0 = (mesh_xmax-mesh_xmin) * (mesh_ymax-mesh_ymin)
Solid material parameters#
Es = 1.
nus = 0.499
mat_params_params = {"E":Es, "nu":nus}
mat_params_c = {"model":"CGNH" , "parameters":mat_params_params}
mat_params_d = {"model":"CGNH_bar", "parameters":mat_params_params}
Loading#
beta_min = 1.
beta_max = 2.
n_steps = 10
beta_lst = numpy.linspace(beta_min, beta_max, n_steps)
Symbolic expression of the macroscopic model response#
Symbolic variables#
lmbda_macro, mu_macro = sympy.symbols("lambda, mu")
K_macro = lmbda_macro + 2*mu_macro/3
G_macro = mu_macro
C_macro = sympy.MatrixSymbol("C", 3, 3).as_explicit()
I_C_macro = sympy.trace(C_macro)
III_C_macro = sympy.det(C_macro)
J_macro = sympy.sqrt(III_C_macro)
pf = sympy.symbols("p_f")
Coupled model expression#
W_c = (lmbda_macro/4) * (J_macro**2 - 1 - 2*sympy.ln(J_macro))
W_c += (mu_macro/2) * (I_C_macro - 3 - 2*sympy.ln(J_macro))
Sigma_macro_c = 2*sympy.diff(W_c, C_macro)
Sigma_macro_c -= pf * J_macro * C_macro.inv()
p_hydro_macro_c = - sympy.trace(Sigma_macro_c.T * C_macro)/3/J_macro
Decoupled model expression#
W_d = (K_macro/4) * (J_macro**2 - 1 - 2*sympy.ln(J_macro))
W_d += (G_macro/2) * (J_macro**(-2/3) * I_C_macro - 3)
Sigma_macro_d = 2*sympy.diff(W_d, C_macro)
Sigma_macro_d -= pf * J_macro * C_macro.inv()
p_hydro_macro_d = - sympy.trace(Sigma_macro_d.T * C_macro)/3/J_macro
Computing macroscopic model response#
beta = sympy.symbols("beta")
F = sympy.Matrix(
[[beta, 0 , 0],\
[0 , 1/beta, 0],\
[0 , 0 , 1]])
J = F.det()
C = F.T * F
p_hydro_macro_c = p_hydro_macro_c.subs(list(zip(C_macro, C))).subs(pf, 0.) # list & zip should not be needed, cf. https://github.com/sympy/sympy/issues/10589
p_hydro_macro_d = p_hydro_macro_d.subs(list(zip(C_macro, C))).subs(pf, 0.) # list & zip should not be needed, cf. https://github.com/sympy/sympy/issues/10589
homogenization_problem = dmech.HomogenizationProblem(
dim=2,
mesh=mesh,
mat_params=mat_params_params,
vol=mesh_bbox_V0,
bbox=mesh_bbox)
lmbda_tilde, mu_tilde = homogenization_problem.get_lambda_and_mu()
p_hydro_macro_c = p_hydro_macro_c.subs(lmbda_macro, lmbda_tilde).subs(mu_macro, mu_tilde)
p_hydro_macro_d = p_hydro_macro_d.subs(lmbda_macro, lmbda_tilde).subs(mu_macro, mu_tilde)
beta_macro_vals = numpy.linspace(beta_min, beta_max, 100)
p_hydro_macro_c_ = sympy.lambdify(beta, p_hydro_macro_c, modules=["numpy"])
p_hydro_macro_c_vals = p_hydro_macro_c_(beta_macro_vals)
p_hydro_macro_d_ = sympy.lambdify(beta, p_hydro_macro_d, modules=["numpy"])
p_hydro_macro_d_vals = p_hydro_macro_d_(beta_macro_vals)
Computing microscopic model response#
load_params = {}
load_params["pf_lst"] = [0.]*len(beta_lst)
load_params["U_bar_00_lst"] = [float(beta - 1) for beta in beta_lst]
load_params["sigma_bar_01_lst"] = [0.]*len(beta_lst)
load_params["sigma_bar_10_lst"] = [0.]*len(beta_lst)
load_params["U_bar_11_lst"] = [float(1./beta-1.) for beta in beta_lst]
step_params = {}
step_params["n_steps"] = n_steps
step_params["Deltat"] = 1.
step_params["dt_ini"] = 0.1
step_params["dt_min"] = 0.01
step_params["dt_max"] = 0.1
Coupled model#
res_basename = "Fig10"
qois_filename = res_basename+"-qois.dat"
dmech.run_HollowBox_MicroPoroHyperelasticity(
dim=2,
mesh=mesh,
displacement_perturbation_degree=2,
quadrature_degree=4,
mat_params=mat_params_c,
load_params=load_params,
step_params=step_params,
res_basename=res_basename,
verbose=1,
write_qois_limited_precision=False)
qois_vals = numpy.loadtxt(qois_filename)
qois_name_list = open(qois_filename).readline().split()[1:]
eps_lst = qois_vals[:, qois_name_list.index("U_bar_XX")]
beta_micro_c_vals = eps_lst+1
p_hydro_micro_c_vals = qois_vals[:, qois_name_list.index("p_hydro")]
Decoupled model#
res_basename = "Fig10"
qois_filename = res_basename+"-qois.dat"
dmech.run_HollowBox_MicroPoroHyperelasticity(
dim=2,
mesh=mesh,
displacement_perturbation_degree=2,
quadrature_degree=4,
mat_params=mat_params_d,
load_params=load_params,
step_params=step_params,
res_basename=res_basename,
verbose=1,
write_qois_limited_precision=False)
qois_vals = numpy.loadtxt(qois_filename)
qois_name_list = open(qois_filename).readline().split()[1:]
eps_lst = qois_vals[:, qois_name_list.index("U_bar_XX")]
beta_micro_d_vals = eps_lst+1
p_hydro_micro_d_vals = qois_vals[:, qois_name_list.index("p_hydro")]
Generating plot#
plt.figure()
plt.rc("xtick", labelsize=14)
plt.rc("ytick", labelsize=14)
plt.rc("legend", fontsize=12)
plt.xlabel(r"$\beta$" , fontsize=16)
plt.ylabel(r"$p_{hydro}~(kPa)$", fontsize=16)
plt.plot(beta_micro_c_vals, p_hydro_micro_c_vals, "#084594" )
plt.plot(beta_micro_d_vals, p_hydro_micro_d_vals, "#084594", linestyle="dashed")
plt.plot(beta_macro_vals, p_hydro_macro_c_vals, "#99000D" )
plt.plot(beta_macro_vals, p_hydro_macro_d_vals, "#99000D", linestyle="dashed")
plt.legend(
["Microscopic model " r"$\tilde{p}_{hydro}$"" - coupled",\
"Microscopic model " r"$\tilde{p}_{hydro}$"" - decoupled",\
"Macroscopic model " r"$\bar{p}_{hydro}$"" - coupled",\
"Macroscopic model " r"$\bar{p}_{hydro}$"" - decoupled"])
plt.xlim(beta_min, beta_max)
plt.ylim(-0.1, +0.01)
plt.savefig("Fig10-p_hydro.pdf", bbox_inches="tight")
plt.show()